
Mastering Robotic Skills in Real Visual Worlds through Model-based
Reinforcement Learning

Wei Zhu1,∗, Masashi Okada2,∗,†, and Tadahiro Taniguchi2,3

Abstract— In the present work, a model-based reinforcement
learning (RL), namely DayDreaming, is applied to quickly and
accurately learn the robotic skills in the physical worlds only
with the image observation. The model-based RL methods with
the image observation can outperform the pure model-free RL
frameworks in video games and robotic simulators, it is however
rare to validate their advantages in the real worlds. With
the aim of broadly applying the model-based RL algorithm
and validating its effectiveness in the real-world scenarios,
we directly utilize the physical robotic arm to learn diverse
skills via the real-time interaction. To significantly reduce the
real-world interaction time, a state transition model is created
to generate the long-horizon simulated samples for the RL
training. Since the only observation is the high-dimensional
image which is too complicated to be directly used as the input
and output of the transition model, we leverage contrastive
learning to encode the image observation into a low-dimensional
latent feature vector, which can exempt the commonly-used
decoder of image reconstruction that might possibly cause
object vanishing. The real comparison implementations with
a robotic arm learning three different skills, reaching, posi-
tioning and pushing, demonstrate that our method distinctly
outperforms another model-based RL algorithm and a model-
free RL approach with respect of the learning efficiency and
operation accuracy, which indicates a feasible way of widely
applying the RL framework in the image-based real worlds.

I. INTRODUCTION

There are two crucial issues that limit the broad applica-
tions of reinforcement learning (RL) for the physical robots:
(1) sim-to-real discrepancies which make it prohibitively
challenging to directly deploy the simulated policy on the
real robots with the same performance in simulation; (2)
high-cost interaction that prohibits the direct training with
the physical robots. A plenty of successful works about the
robotic manipulation are limited in simulation to validate the
novel RL algorithms since a considerable amount of samples
can be quickly and easily generated [1]–[4], while very few
successful applications [5] are deployed on the real robotic
arms without simulation or any prior knowledge due to the
time-consuming interaction. Instead, most of the practical
implementations are transferred from simulation or based on
expert experiences [6]–[10]. However, the simulated policy
may fail in certain real-world scenarios because of the sim-
to-real gap. In order to significantly improve the learning

1W. Zhu is with the Department of Robotics, Graduate School of
Engineering, Tohoku University, Japan.

2M. Okada and T. Taniguchi are with Digital & AI Technology Center,
Technology Division, Panasonic Corporation, Japan.

3T. Taniguchi is also with College of Information Science and Engineer-
ing, Ritsumeikan University, Japan.
∗W. Zhu and M. Okada equally contribute to this work.
†Corresponding author: okada.masashi001@jp.panasonic.com

efficiency in either simulation or real environments, most
of works partially or heavily rely on expert knowledge [8],
[11]–[13]. Additionally, offline RL can acquire manipulation
skills from the mixed datasets including both the expert and
random experiences [14], [15]. However, gathering offline
experiences is time-consuming and the policy learned from
the offline datasets may be non-inclusive due to the problem
of distribution drift. In contrast, the model-based RL method
applied in this work directly masters various skills from the
online learning without any prior knowledge and the skill
policy can be generalized for the unexplored conditions in
the training process.

As an effective way to improve the learning efficiency, the
model-based RL framework is a feasible strategy to directly
learn the robotic skills in the real worlds. The model can be
regarded as a simulator, which can quickly imagine a great
amount of long-horizon interaction without operating the
real robots. A plenty of robotic applications have validated
the high learning efficiency of the model-based RL algo-
rithms with the low-dimensional observations [16], [17], it
is however challenging and complicated to create and update
a state transition model with the high-dimensional image
observations being the input and output of the model because
predicting the image might probably accumulate errors and
consume considerable calculation resources.

When the robots need to manipulate objects such as the
grasp and assembly tasks, and navigate in the dynamic
environments like autonomous driving and the service in
public places, the image observations are indispensable apart
from the low-dimensional proprioceptive states, e.g. joint
angles, gripper position, and vehicle velocity. For the model-
free RL framework, the image observation are generally
encoded and compressed by convolutional neural networks
(CNNs) to extract an abstract low-dimensional feature vector
at first [11], [18], which next concatenates other explicit
information to form the RL states [19]–[21]. However, updat-
ing the complex CNNs and acquiring an optimal policy with
broad generalization ability generally require a tremendous
amount of exploration and interaction. For the model-based
RL algorithms, one crucial issue is how to create a state
transition model with the image observations. Recently, a
recurrent state-space model (RSSM) successfully encodes
the image observation into a latent state and predicts the
future states in long horizon given the current state, action,
and history information accumulated via the recurrent neural
networks (RNNs) [22]. Since the samples used to update
the RL policy is generated from the latent space and the
state transition model, it is computationally cheap and can

Decoder

���+�

���+�

���+�

ℎ�+� ��+�

MLP1

MLP2 MLP3

Fig. 1. The framework of model-based RL with the image observation. Enc1 and Enc2 represent two image encoders which have an identical CNN
framework. FCN stands for an one-layer fully connected network while MLP is a multi-layer perceptron. GRU means a gate recurrent unit. The blue dotted
two-way arrow points the pair of contrastive learning. In the real experiments, the image size is 64× 64× 3, which is projected into a 32× 32 discrete
variable matrix used as the latent state in the transition model. The decoder of the variable matrix is exempted from our framework so as to relieve the
problem of object vanishing.

improve the learning efficiency significantly [23], [24]. How-
ever, the image reconstruction required to update the RSSM
networks may cause the problem of object vanishing [1],
[25]. Therefore, as an alternative of encoding the image
observation, contrastive learning [26] can be adopted to free
the image construction [1], [6]. Nevertheless, the image-
based RL algorithms are mainly limited in video games and
robotic simulators due to the real-world difficulties of reward
definition, object detection, environment resetting, and so
forth.

Motivated by the above, we apply a model-based rein-
forcement learning (RL) method to quickly and accurately
learn the robotic skills in the physical worlds only with
the image observation. We name the method DayDreaming
because it can acquire the skill by dreaming the virtual
interaction via a state transition model simultaneously with
the real interaction. We develop the DayDreaming with the
core framework of the DreamingV2 algorithm [27] which
demonstrates the outstanding performance in simulated en-
vironments. However, DreamingV2 assumes all the environ-
ment information is perfectly known such as the pose of
the object and the image observation. For DayDreaming, we
fine-tune certain hyper-parameters to make it more practical
for the learning of the real robotic arm and define the real
task scenarios based on the real and physical conditions. At
the meanwhile, DayDreaming is different from Daydreamer
[5] in that we free the process of the image reconstruction
thus to diminish the problem of object vanishing. We are
aimed at learning three tasks, reaching, positioning and
pushing respectively. While reaching is a basic task used
to validate a plenty of RL algorithms, positioning is one of
the fundamental skills in factories, warehouses, retail stores,
and so forth, which can be further combined with other

related tasks, such as the insertion, fitting, pick and place
[28]. Moreover, pushing is a rather more challenging task
since the interaction between the robotic arm and the object
is complex. Our primary contributions are summarized as
follows:
• We directly train a physical robotic arm in the real

worlds by leveraging a model-based RL framework
that is efficient in sampling and precise for the robotic
manipulation, which could be a feasible way for the
practical applications of the RL algorithms.

• DayDreaming enables the robotic arm to learn diverse
skills including reaching, positioning and pushing in the
real worlds, which validates the generalization ability of
the DreamingV2 algorithm not only in simulation but
also in the real worlds.

• We compare DayDreaming with a state-of-the-art
model-based RL method named DreamerV2 and an
advanced model-free RL approach called DrQ-v2, with
the ablation results experimentally indicating that Day-
Dreaming could be a more suitable alternative for
learning certain robotic skills.

II. APPROACH

The present approach, namely DayDreaming, is based on
DreamerV2 [24], DayDreamer [5] and DreamingV2 [27].
Our framework leverages contrastive learning [26] to exempt
the image reconstruction used in DreamerV2 and Day-
Dreamer so as to diminish the influence of object vanishing
caused by the image reconstruction [1]. Fig. 1 illustrates
the top-level concept of our algorithm framework, with
the details summarized in this section. We decouple the
framework into two parts which are alternately updated: the
world model learning and the RL policy optimization. The

world model is updated from the past experiences collected
from the direct interaction in the real worlds. On the contrary,
the samples used for the policy optimization are virtually
generated via the world model, which can relieve too much
physical operation. The updated policy is in turn deployed
into the real worlds to further replenish the replay buffer of
past experiences.

A. World Model Learning

Prediction model with the image observation. Directly
predicting the next image observation based on the present
image and action may bring about accumulated errors and
require a tremendously amount of computer resources when
the training batch size is large and the prediction horizon
is long. Therefore, we leverage the idea of RSSM [22] to
compress the high-dimensional image observation into a low-
dimensional latent state, and have the multi-step prediction
process implemented in the latent space. The prediction
model is defined as follows:

ht = fhφ (ht−1, at−1, zt−1), (1a)

z̃t ∼ pzφ(z̃t|ht), (1b)

zt ∼ qφ(zt|ht, ot). (1c)

ht is a deterministic feature vector at time t which selects
the possibly key information from the long-horizon historical
experience and the last state as well as the last action. z
stands for a latent state variable matrix with a low dimension.
Given the last action at−1, the last latent state zt−1 and
ht−1, we can inference ht and the current latent state
z̃t from gated recurrent units (GRUs) [29] in the latent
space. Additionally, a decoder qφ is utilized to compress
the image observation ot into the latent state. Instead of
directly representing the latent state z as a diagonal Gaussian
[23], we utilize the categorical latent variables shown in
Fig. 1 from the motivation that the categorical distributions
can naturally capture multi-modal uncertainty of stochastic
state transitions [27]. Take the pushing task implemented
in this work for example, the contact between the end
effector and the object is rich and complex, which makes
the state transition model highly discontinuous. In this case,
the discrete state representation with the categorical latent
variables can experimentally behave better than the diagonal
Gaussian representation [24], [27].

Distribution objective. One goal of the world model
is to make the two stochastic distributions z̃t and zt as
close as possible, therefore, we define the first objective
as a Kullback-Leibler divergence (KL) at time t + i with
i = 0, 1, ..., k:

JKLi = KL[qφ(zt+i|ht+i, ot+i)||pφ(z̃t+i|ht+i)]. (2)

Contrastive objective. Instead of reconstructing the image
from the latent state [22]–[24] to form the objective for
unsupervised representation learning, we choose contrastive
learning to complete the representation learning because it is
empirically able to diminish the problem of object vanishing,
which is important when the robotic arms operate small

objects. In addition, we augment the data by the random
crop technique to improve the unsupervised representation
[21], which is also experimentally validated in the reaching
task introduced in the experiment section.

We leverage the InfoNCE (noise contrastive estimator)
[26] to define the contrastive objective at time t + i with
i = 0, 1, ..., k:

J COi =
ẑ1t+i ⊗ ẑ2t+i∑k
j=0 ẑ

1
t+j ⊗ ẑ2t+i

+
z̄t+i ⊗ ẑ2t+i∑k
j=0 z̄t+j ⊗ ẑ2t+i

,

(3)

with ⊗ being the Hadamard. To facilitate the contrastive
unsupervised learning, we leverage the technique of momen-
tum contrast which is widely used for unsupervised visual
representation learning [30], [31]. Enc1 and Enc2, FCN11

and FCN12 shown in Fig. 1 are the two pairs used as
the momentum contrast, which form the two items of the
contrastive object (3).

Reward objective. Because the policy optimization is
executed in the latent space, the reward can not be directly
obtained from the real worlds while implementing the long-
horizon prediction. Therefore, a neural network is required
to predict the reward from the latent state, with the definition
described as following:

r̃t ∼ prφ(r̃t|zt, ht). (4)

The reward objective at time t+ i can be simply defined as
a log probability:

J Ri = log prφ(rt+i|zt+i, ht+i), (5)

with rt+i being the reward obtained from the real interaction
at time t+ i.

Variational evidence lower bound objective. The final
overall objective used to update the world model can be
defined as a variational evidence lower bound objective
(ELBO):

J ELBO = Eqφ(zt:t+k|at:t+k,ot:t+k)
k∑
i=0

(−βJKLi

+ J COi + J Ri),

(6)

where β is used to scale the KL objective and the conver-
gence proof of ELBO can be referred from [23], [26].

B. Policy Optimization

Since we have the inference models (1a) and (1b), we
can quickly imagine a plenty of episodes in the latent space
without operating the real robot. Assuming we have a critic
network to map the latent state to the value function ṽt and
an actor network to project the latent state to the action ãt:

ṽt ∼ qvθ (ṽt|z̃t, ht), (7a)
ãt ∼ qaθ (ãt|z̃t, ht), (7b)

with z̃ being the predicted latent state shown in Fig. 1. We
can evaluate the value function via n-step RL because it

Fig. 2. Experimental scenes. The image observation is sampled from a fixed
RGB camera whose view can cover the motion area of the end effector. A
is the reaching task scenario where the initial position of the end effector is
randomly set in a 3D space and the goal position is fixed for simplification.
B represents the positioning task that the end effector randomly located in
a safe motion area is required to move exactly above the cube object with
the random position in a relatively small area. C illustrates the pushing task
that the end effector should push the cube object to a goal position as close
as possible.

has better unbiased estimation than one-step RL and is free
of the tyranny of the single time step [32]. The discount
accumulated return is defined as below:

V iN (sτ)=̇ E(prφ,qθ)

[
h−1∑
n=τ

(γn−τ r̃n) + γh−τ ṽ(sh)

]
,

Vλ(sτ)=̇ (1− λ)

H−1∑
n=1

(λn−1V nN (sτ)) + λH−1V HN (sτ),

(8)

with γ and λ being the discount factors and H standing
for the prediction horizon length. Then we can intuitively
define the value function objective (VO) as the sum of the
log probabilities along with the prediction horizon:

J V O = E(fhφ ,p
z
φ,p

r
φ,qθ)

[
t+H−1∑
τ=t

log qvθ (Vλ(sτ)|sτ)

]
. (9)

At the meanwhile, the action needs to be optimized to
maximize the value function, therefore, we represent the
action objective (AO) as:

J AO =E(fhφ ,p
z
φ,p

r
φ,qθ)[

t+H−1∑
τ=t

log qaθ (aτ |sτ) · (ṽτ − Vλ(sτ))

]
.

(10)

C. Implementation

We set the sampling time length as k = 32 while the
prediction horizon length in the latent space is given as H =
15. The batch size is 32. The corresponding factors β, γ,
and λ are 1.0, 0.99, and 0.95 respectively. We use the Adam
optimizer to update the world model and the RL model with
all learning rates being the same as 0.0001.

III. EXPERIMENTS

We performed three tasks, namely reaching, positioning
and pushing respectively, with the experimental scenes il-
lustrated in Fig. 2. Moreover, we executed three baselines
to highlight the advantages of our model-based RL frame-
work, namely DayDreaming. One is a purely model-free RL
framework similar to the deep deterministic policy gradient
(DDPG) algorithm used in [19]. However, we found that
the objective loss tended to be infinite even though we

carefully tuned the hyper-parameters. Therefore, we omitted
this baseline in the quantitative analysis. Another one is a
data-augmented model-free RL approach derived from [21],
namely DrQ-v2. The last one is a state-of-the-art model-
based RL originated from [5], [24], called DreamerV2. All
the tasks share the same size of the image observation
64 × 64 × 3 but have slightly different reward definitions
and motion areas, with the details shown as follows.

A. Reaching

For the basic task of reaching, we fix the goal position
Pg for simplification in a 3D space 0.26 × 0.26 × 0.14m.
When the end effector moves out of the area, a penalty of
−0.1 is immediately given and a new episode starts. After
the time step reaches 200, the episode is also resumed. At the
beginning of each episode, the position of the end effector
Pe is randomly set in the specified area. If the end effector is
within the area during the interaction, the reward is defined
as follows:

r = (1− dg/dm)/1.25, if dg > 0.007 else 1, (11)

with dg = ||Pg − Pe||2 being the distance from the end
effector to the fixed goal and dm being the diagonal length of
the area. We specify a minimum threshold of 7mm to give a
high reward as 1 around the goal due to the low resolution of
the image observation, thus to enable less stochastic motion
when the end effector reaches the goal. The action space is
composed by 3 continuous velocities in the x/y/z directions
of the world coordinate, with the range [-0.05, 0.05] m/s and
the control frequency 10Hz.

We firstly initialized the experience pool using 30 episodes
and pre-trained the model 2000 times. Instead of individually
maintaining a thread to update the model, we trained the
model 200 times at the end of each episode to reduce the
delay caused by the thread communication. Moreover, during
the model updating, we could have enough time to reset the
episode. Because the episode was terminated when the end
effector moved out of the specified area, the episode length
varied accordingly. The training process is shown in Fig. 3(a)
and 3(d). After the training, we evaluated 20 times, with the
quantitative results shown in TABLE. I.

As shown in Fig. 3(a), our approach could quickly learn
the reaching skill within 3000 time steps which were equal to
5 minutes in the real interaction. Although the DreamerV2
method obtained the slightly higher average return of the
final 20 evaluations, it failed 8 times whose returns were
omitted to calculate the average return. Because our method
leveraged the data augmentation technique to process the
image margin and avoided the image decoder via contrastive
learning, the end effector was able to stably move within
the specified area. Additionally, the model-free RL frame-
work DrQ-v2 required rather more episodes but produced
the lowest average return, which validated that our model-
based RL method and the baseline DreamerV2 as another
model-based RL approach were able to improve the learning
efficiency of RL and the operation accuracy for the reaching
task.

(a) Reaching/steps (b) Positioning/steps (c) Pushing/steps

(d) Reaching/episodes (e) Positioning/episodes (f) Pushing/episodes

Fig. 3. Training processes of all the three tasks. Three evaluations are implemented every five training episodes and these figures depict the evaluation
returns along with the time steps and the interaction episodes. The return is the sum of all rewards corresponding to the time steps in one episode. The
upper figures illustrate the evaluation return with the time steps while the bottom ones show the assessment with the episodes. (a)(d), (b)(e) and (c)(f)
represent the training processes of the reaching, positioning and pushing tasks respectively. The time steps are proportional to the real interaction time
with the scale factor about 0.1 second. More training episodes bring about more training steps because 200 iterations are executed to update the neural
networks after each episode. In addition, more frequent resetting operations are required with the episode number increasing, which significantly adds the
extra time of the learning process. Certain episodes have less than 200 steps because the end effector moves out of the area and the episodes terminate
ahead of the maximum time steps.

TABLE I
FINAL EVALUATION OF THE REACHING TASK.

DayDreaming DreamerV2 DrQ-v2

out-of-area times 2 8 6

average return 148.5 152.7 141.9

time steps 5900 5900 5800

episodes 30 35 75

B. Positioning

We progressively increased the task difficulty. For the
positioning task shown in Fig. 2, the end effector is required
to move above a small cube object for the lift task. Please
note that we do not directly acquire the lift skill with a single
framework so as to reduce the task complexity. Additionally,
the initial position of the end effector is randomly set on a
0.26×0.26m area while the cube object is randomly located
on a 0.05× 0.05m square. To further simplify the problem,
we assume that the end effector moves on a 2D plane rather
than in a 3D space and the rotation angle of the cube object
is approximately a constant. Similar to the reaching task,
when the end effector moves out of the area, it is punished
by −0.1. Besides, the reward will be 1 if the end effector
is above the cube object within a threshold dt. Let Pg be
the position of the cube object. Before each episode, we can

roughly calibrate Pg by manually locating the end effector
above the cube object. Therefore, the reward definition within
the motion area is same as the reaching task’s (11). Although
calibration is inaccurate, the final learned policy can still
achieve the positioning task with high success rate. Please
note that we do not use the camera to calculate the precise
position of the cube because the camera calibration takes
time every time the camera pose changes. Additionally, the
view of the cube may be blocked by the end effect during
the exploration process.

After initializing the experience pool with 30 episodes
generated by the random policy, we pre-trained the model
2000 times to obtain a rough policy. The training process and
final evaluation are shown in Fig. 3(b) and 3(e), and TABLE.
II respectively. In Fig. 3(b), both the model-based approaches
could quickly obtain a feasible policy with about 20 minute
real interaction and less than 40 episodes. However, our
method could generate higher return at the beginning and
keep a stable training process while the DreamerV2 approach
produced a fluctuated learning curve shown in Fig. 3(b). The
same problem of vibration obviously occurred in DrQ-v2.
Additionally, as the final 20 evaluations show, the Dream-
erV2 method was unable to well deal with the image margin
since it failed 4 times. The task failure includes two cases:
the end effector either moves out of the area or is always
far from the cube object. Although our approach failed one
time, it could accurately keep the end effector within the

motion area and obtain a higher average return shown in
TABLE. II. On the contrary, the model-free baseline DrQ-v2
was significantly less precise since it failed all evaluations
and produced the lowest average return.

TABLE II
FINAL EVALUATION OF THE POSITIONING TASK.

DayDreaming DreamerV2 DrQ-v2

out-of-area times 0 4 0

failures 1 4 20

average return 165.9 158.5 134.3

time steps 11500 11900 12900

episodes 40 50 60

C. Pushing

We finally implemented a more challenging task, pushing
a cube object to a goal area on a 2D plane. The initial
position of the end effector is randomly set on the back
one third of the motion area while the cube object is put
in front of the end effector so that the camera can view
the cube without being blocked by the end effector. We
do not roughly calibrate the position of the cube with the
robotic arm as the positioning task because the cube has
complex motion when it is pushed. Instead, we first detect
the cube object and then get its centroid which corresponds
to the pixel coordinate of the image observation. Please
note that we do not use the absolute position relative to
the frame of the robotic arm simply for simplification,
otherwise, we need to calibrate the camera and design an
absolute positioning method which is out of the scope of
our work. The reward definition is still similar to that of the
reaching task (11). Because the cube centroid detected by the
camera is influenced by the perspective principle, the whole
experiment may be inaccurate. However, the training process
and the final evaluations can still demonstrate the advantages
of our method.

As the results shown in Fig. 3(c) and 3(f), TABLE. III,
DayDreaming and DreamerV2 significantly outperformed
the model-free framework in respect of learning efficiency.
DrQ-v2 required far more episodes to obtain a feasible pol-
icy, which brought about very frequent resetting procedure.
Moreover, DayDreaming was able to achieve rather more
precise performance with respect to the average return. We
define the failure if the episode return is less than 90 or
the motion is out of the area. Although our method failed
3 times, we found that 2 failures were caused by the view
blocking, that is the reward was zero if the cube could not be
detected due to the blocking. Even with long-time interaction
(about 36 minutes), DreamerV2 failed 7 times due to the
out-of-area motion and small episode returns. We think that
the problem was possibly caused by the decoder used in
DreamerV2 which might vanish the cube object.

TABLE III
FINAL EVALUATION OF THE PUSHING TASK.

DayDreaming DreamerV2 DrQ-v2

out-of-area times 0 1 0

failures 3 7 1

average return 152.8 129.9 110.6

time steps 21500 21400 21600

episodes 95 80 235

D. Experiment Summary

We performed three tasks, reaching, positioning and push-
ing respectively and compared our method with another two
state-of-the-art RL algorithms only with the image obser-
vation. The interaction time used to learn these skills was
10, 20 and 36 minutes respectively. Moreover, the episodes
were 30, 40 and 95, which were equal to the episodes of
another model-based RL approach and rather less than a
model-free RL framework. With the same interaction time
and the limited time steps, our method could achieve higher
success rate and guarantee more precise performance even
with the low-resolution image, which could be an effective
learning framework in the real worlds only with the image
observation.

IV. CONCLUSIONS

In this work, we applied a model-based RL framework to
learn robotic skills directly in the real worlds, thus to avoid
the sim-to-real gap when deploying the RL policies on the
physical robots. Aimed at reducing the real interaction, we
created a state transition model as the simulator which could
quickly generate long-horizon samples for the RL training
without operating the real robot. To encode and compress
the high-dimensional image observation without the image
reconstruction, we utilized the technique of data augmenta-
tion and contrastive learning, which experimentally validated
that our method could deal with the margin conditions and
diminish the problem of object vanishing.

Although we have achieved three robotic skills, reaching,
positioning and pushing respectively, it is still challenging to
apply our algorithm framework in more complex scenarios.
On the one hand, the motion area and the initial states in our
present work are limited in small spaces for simplification.
When we relieve these limitations, the interaction time
increases considerably. On the other hand, the size of the
work space is also restricted by the low-resolution image.
If we increase the resolution to cover a larger area, we
need longer training time and more computation resources.
Additionally, for the manipulation task, it is difficult to
define an accurate reward function which is crucial for RL
algorithms but cumbersome to obtain in the real worlds. In
our future works, we will focus on solving these limitations
to enable more practical robotic applications with the model-
based RL framework.

REFERENCES

[1] M. Okada and T. Taniguchi, “Dreaming: Model-based Reinforcement
Learning by Latent Imagination without Reconstruction,” in ICRA,
2021.

[2] A. Byravan, J. T. Springenberg, A. Abdolmaleki, R. Hafner, M.
Neunert, T. Lampe, N. Siegel, N. Heess, and M. Riedmiller, “Imagined
Value Gradients: Model-based Policy Optimization with Tranferable
Latent Dynamics Models,” in Conference on Robot Learning (CoRL),
2020.

[3] N. Hansen and X. Wang, ”Generalization in Reinforcement Learning
by Soft Data Augmentation,” in ICRA, 2021.

[4] S. James and A. J. Davison, “Q-Attention: Enabling Efficient Learning
for Vision-Based Robotic Manipulation,” IEEE Robotics and Automa-
tion Letters, vol. 7, no. 2, pp. 1612-1619, 2022.

[5] P. Wu, A. Escontrela, D. Hafner, K. Goldberg, and P. Abbeel, “Day-
Dreamer: World Models for Physical Robot Learning,” arXiv preprint
arXiv:2206.14176, 2022.

[6] W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto, “Learning Predictive
Representations for Deformable Objects using Contrastive Estima-
tion,” arXiv preprint arXiv:2003.05436, 2020.

[7] S. James, A. J. Davison, and E. Johns, “Transferring End-to-end
Visuomotor Control from Simulation to Real World for a Multi-stage
Task.” in Conference on Robot Learning (CoRL) 2017.

[8] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvu-
nakool, J. Kramar, R. Hadsell, N. Freitas, and N. Heess, “Reinforce-
ment and Imitation Learning for Diverse Visuomotor Skills,” arXiv
preprint arXiv:1802.09564, 2018.

[9] D. Son, M. Kim, J. Sim and W. Shin, ”Reinforcement Learning for
Vision-based Object Manipulation with Non-parametric Policy and
Action Primitives,” in IROS, 2021.

[10] G. Schoettler, A. Nair, J. A. Ojea, S. Levine, and E. Solowjow, “Meta-
Reinforcement Learning for Robotic Industrial Insertion Tasks,” in
IROS, 2020.

[11] G. Schoettler, A. Nair, J. Luo, S. Bahl, J. A. Ojea, E. Solowjow, and S.
Levine, “Deep Reinforcement Learning for Industrial Insertion Tasks
with Visual Inputs and Natural Rewards,” in IROS, 2020.

[12] T. Z. Zhao, J. Luo, O. Sushkov, R. Pevceviciute, N. Heess, J. Scholz,
S. Schaal, and S. Levine, “Offline Meta-Reinforcement Learning for
Industrial Insertion,” in ICRA, 2022.

[13] A. Zhan, R. Zhao, L. Pinto, P. Abbeel, M. Laskin, “A Framework
for Efficient Robotic Manipulation,” arXiv preprint arXiv:2012.07975,
2020.

[14] R. Rafailov, T. Yu, A. Rajeswaran, and C. Finn, “Offline Reinforce-
ment Learning from Images with Latent Space Models,” in Learning
for Dynamics and Control (L4DC), 2021.

[15] T. Yu, A. Kumar, R. Rafailov, A. Rajeswara, S. Levine, and C. Finn,
“Combo: Conservative Offline Model-based Policy Optimization,” in
Advances in Neural Information Processing Systems (NIPS), 2021.

[16] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra and
K. S. J. Pister, “Low-Level Control of a Quadrotor with Deep Model-
Based Reinforcement Learning,” IEEE Robotics and Automation Let-
ters, vol. 4, no. 4, pp. 4224-4230, 2019.

[17] T. G. Thuruthel, E. Falotico, F. Renda and C. Laschi, “Model-based
Reinforcement Learning for Closed-Loop Dynamic Control of Soft
Robotic Manipulators,” IEEE Transactions on Robotics, vol. 35, no.
1, pp. 124-134, 2019.

[18] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez and T. Funkhouser,
“Learning Synergies Between Pushing and Grasping with Self-
Supervised Deep Reinforcement Learning,” in IROS, 2018.

[19] J. Jin, N. M. Nguyen, N. Sakib, D. Graves, H. Yao and M. Jagersand,
“Mapless Navigation among Dynamics with Social-safety-awareness:
A Reinforcement Learning Approach from 2D Laser Scans,” in ICRA,
2020.

[20] I. Kostrikov, D. Yarats, and R. Fergus, “Image Augmentation is All
You Need: Regularizing Deep Reinforcement Learning from Pixels,”
in International Conference on Learning Representations (ICLR),
2020.

[21] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto, “Mastering Visual Con-
tinuous Control: Improved Data-augmented Reinforcement Learning,”
arXiv preprint arXiv:2107.09645, 2021.

[22] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning Latent Dynamics for Planning from Pixels,”
arXiv preprint arXiv:1811.04551, 2018.

[23] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to Con-
trol: Learning Behaviors by Latent Imagination,” arXiv preprint
arXiv:1912.01603, 2019.

[24] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Mastering Atari with
Discrete World Models,” arXiv preprint arXiv:2010.02193, 2020.

[25] F. Deng, I, Jang, and S. Ahn, “Dreamerpro: Reconstruction-free
Model-based Reinforcement Learning with Prototypical Representa-
tions,” in International Conference on Machine Learning (ICML),
2022.

[26] A. Oord, Y. Li, and O. Vinyals, “Representation Learning with Con-
trastive Predictive Coding,” arXiv preprint arXiv:1807.03748, 2018.

[27] M. Okada and T. Taniguchi, “DreamingV2: Reinforcement Learning
with Discrete World Models without Reconstruction,” in IROS, 2022.

[28] R. Okumura, N. Nishio, and T. Taniguchi, “Tactile-Sensitive Newtoni-
anVAE for High-Accuracy Industrial Connector-Socket Insertion,” in
IROS, 2022.

[29] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation
of Gated Recurrent Neural Networks on Sequence Modeling,” arXiv
preprint arXiv:1412.3555, 2014.

[30] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum Contrast
for Unsupervised Visual Representation Learning,” in IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2020.

[31] A. Srinivas, M. Laskin, and P. Abbeel, “Curl: Contrastive Unsuper-
vised Representations for Reinforcement Learning,” arXiv preprint
arXiv:2004.04136, 2020.

[32] R. S. Sutton and G. B. Andrew, “Reinforcement Learning: An Intro-
duction,” MIT press, 2018.

	INTRODUCTION
	APPROACH
	World Model Learning
	Policy Optimization
	Implementation

	EXPERIMENTS
	Reaching
	Positioning
	Pushing
	Experiment Summary

	CONCLUSIONS
	References

